544 research outputs found

    Generalizations of Ripley's K-function with Application to Space Curves

    Full text link
    The intensity function and Ripley's K-function have been used extensively in the literature to describe the first and second moment structure of spatial point sets. This has many applications including describing the statistical structure of synaptic vesicles. Some attempts have been made to extend Ripley's K-function to curve pieces. Such an extension can be used to describe the statistical structure of muscle fibers and brain fiber tracks. In this paper, we take a computational perspective and construct new and very general variants of Ripley's K-function for curves pieces, surface patches etc. We discuss the method from [Chiu, Stoyan, Kendall, & Mecke 2013] and compare it with our generalizations theoretically, and we give examples demonstrating the difference in their ability to separate sets of curve pieces.Comment: 9 pages & 8 figure

    Likelihood informed dimension reduction for inverse problems in remote sensing of atmospheric constituent profiles

    Full text link
    We use likelihood informed dimension reduction (LIS) (T. Cui et al. 2014) for inverting vertical profile information of atmospheric methane from ground based Fourier transform infrared (FTIR) measurements at Sodankyl\"a, Northern Finland. The measurements belong to the word wide TCCON network for greenhouse gas measurements and, in addition to providing accurate greenhouse gas measurements, they are important for validating satellite observations. LIS allows construction of an efficient Markov chain Monte Carlo sampling algorithm that explores only a reduced dimensional space but still produces a good approximation of the original full dimensional Bayesian posterior distribution. This in effect makes the statistical estimation problem independent of the discretization of the inverse problem. In addition, we compare LIS to a dimension reduction method based on prior covariance matrix truncation used earlier (S. Tukiainen et al. 2016)

    The radiation of cynodonts and the ground plan of mammalian morphological diversity

    Get PDF
    Cynodont therapsids diversified extensively after the Permo-Triassic mass extinction event, and gave rise to mammals in the Jurassic. We use an enlarged and revised dataset of discrete skeletal characters to build a new phylogeny for all main cynodont clades from the Late Permian to the Early Jurassic, and we analyse models of morphological diversification in the group. Basal taxa and epicynodonts are paraphyletic relative to eucynodonts, and the latter are divided into cynognathians and probainognathians, with tritylodonts and mammals forming sister groups. Disparity analyses reveal a heterogeneous distribution of cynodonts in a morphospace derived from cladistic characters. Pairwise morphological distances are weakly correlated with phylogenetic distances. Comparisons of disparity by groups and through time are non-significant, especially after the data are rarefied. A disparity peak occurs in the Early/Middle Triassic, after which period the mean disparity fluctuates little. Cynognathians were characterized by high evolutionary rates and high diversity early in their history, whereas probainognathian rates were low. Community structure may have been instrumental in imposing different rates on the two clades

    Overrepresentation of South Asian ethnic groups among cases of influenza A(H1N1)pdm09 during the first phase of the 2009 pandemic in England

    Get PDF
    Background During the first wave of the influenza A(H1N1)pdm09 pandemic in England in 2009, morbidity and mortality were higher in patients of South Asian (Indian, Pakistani or Bangladeshi) ethnic minority groups. Objectives This study aims to provide insights in the representation of this group among reported cases, indicating susceptibility and exposure. Methods All laboratory‐confirmed cases including basic demographic and limited clinical information that were reported to the FluZone surveillance system between April and October 2009 were retrieved. Missing ethnicity data were imputed using the previously developed and validated South Asian Names and Group Recognition Algorithm (SANGRA). Differences between ethnic groups were calculated using chi‐square, log‐rank and t tests and rate ratios. Geographic clustering was compared using Ripley's K functions. Results SANGRA identified 2447 (28%) of the total of 8748 reported cases as South Asian. South Asian cases were younger (P < .001), more often male (P = .002) and more often from deprived areas (P < .001) than cases of other ethnic groups. Time between onset of symptoms and laboratory sampling was longer in this group (P < .001), and they were less often advised antiviral treatment (P < .001), however, declined treatment less. The highest cumulative incidence was seen in the West Midlands region (32.7/10 000), London (7.0/10 000) and East of England region (5.7/10 000). Conclusions People of South Asian ethnic groups were disproportionally affected by the first wave of the influenza pandemic in England in 2009. The findings presented contribute to further understanding of demographic, socioeconomic and ethnic factors of the outbreak and inform future influenza preparedness to ensure appropriate prevention and care

    Bayesian astrostatistics: a backward look to the future

    Full text link
    This perspective chapter briefly surveys: (1) past growth in the use of Bayesian methods in astrophysics; (2) current misconceptions about both frequentist and Bayesian statistical inference that hinder wider adoption of Bayesian methods by astronomers; and (3) multilevel (hierarchical) Bayesian modeling as a major future direction for research in Bayesian astrostatistics, exemplified in part by presentations at the first ISI invited session on astrostatistics, commemorated in this volume. It closes with an intentionally provocative recommendation for astronomical survey data reporting, motivated by the multilevel Bayesian perspective on modeling cosmic populations: that astronomers cease producing catalogs of estimated fluxes and other source properties from surveys. Instead, summaries of likelihood functions (or marginal likelihood functions) for source properties should be reported (not posterior probability density functions), including nontrivial summaries (not simply upper limits) for candidate objects that do not pass traditional detection thresholds.Comment: 27 pp, 4 figures. A lightly revised version of a chapter in "Astrostatistical Challenges for the New Astronomy" (Joseph M. Hilbe, ed., Springer, New York, forthcoming in 2012), the inaugural volume for the Springer Series in Astrostatistics. Version 2 has minor clarifications and an additional referenc

    Emergence of a Novel Avian Pox Disease in British Tit Species

    Get PDF
    Avian pox is a viral disease with a wide host range. In Great Britain, avian pox in birds of the Paridae family was first diagnosed in a great tit (Parus major) from south-east England in 2006. An increasing number of avian pox incidents in Paridae have been reported each year since, indicative of an emergent infection. Here, we utilise a database of opportunistic reports of garden bird mortality and morbidity to analyse spatial and temporal patterns of suspected avian pox throughout Great Britain, 2006–2010. Reports of affected Paridae (211 incidents) outnumbered reports in non-Paridae (91 incidents). The majority (90%) of Paridae incidents involved great tits. Paridae pox incidents were more likely to involve multiple individuals (77.3%) than were incidents in non-Paridae hosts (31.9%). Unlike the small wart-like lesions usually seen in non-Paridae with avian pox in Great Britain, lesions in Paridae were frequently large, often with an ulcerated surface and caseous core. Spatial analyses revealed strong clustering of suspected avian pox incidents involving Paridae hosts, but only weak, inconsistent clustering of incidents involving non-Paridae hosts. There was no spatial association between Paridae and non-Paridae incidents. We documented significant spatial spread of Paridae pox from an origin in south-east England; no spatial spread was evident for non-Paridae pox. For both host clades, there was an annual peak of reports in August/September. Sequencing of the avian poxvirus 4b core protein produced an identical viral sequence from each of 20 great tits tested from Great Britain. This sequence was identical to that from great tits from central Europe and Scandinavia. In contrast, sequence variation was evident amongst virus tested from 17 non-Paridae hosts of 5 species. Our findings show Paridae pox to be an emerging infectious disease in wild birds in Great Britain, apparently originating from viral incursion from central Europe or Scandinavia

    Mapping Dynamic Histone Acetylation Patterns to Gene Expression in Nanog-depleted Murine Embryonic Stem Cells

    Get PDF
    Embryonic stem cells (ESC) have the potential to self-renew indefinitely and to differentiate into any of the three germ layers. The molecular mechanisms for self-renewal, maintenance of pluripotency and lineage specification are poorly understood, but recent results point to a key role for epigenetic mechanisms. In this study, we focus on quantifying the impact of histone 3 acetylation (H3K9,14ac) on gene expression in murine embryonic stem cells. We analyze genome-wide histone acetylation patterns and gene expression profiles measured over the first five days of cell differentiation triggered by silencing Nanog, a key transcription factor in ESC regulation. We explore the temporal and spatial dynamics of histone acetylation data and its correlation with gene expression using supervised and unsupervised statistical models. On a genome-wide scale, changes in acetylation are significantly correlated to changes in mRNA expression and, surprisingly, this coherence increases over time. We quantify the predictive power of histone acetylation for gene expression changes in a balanced cross-validation procedure. In an in-depth study we focus on genes central to the regulatory network of Mouse ESC, including those identified in a recent genome-wide RNAi screen and in the PluriNet, a computationally derived stem cell signature. We find that compared to the rest of the genome, ESC-specific genes show significantly more acetylation signal and a much stronger decrease in acetylation over time, which is often not reflected in an concordant expression change. These results shed light on the complexity of the relationship between histone acetylation and gene expression and are a step forward to dissect the multilayer regulatory mechanisms that determine stem cell fate.Comment: accepted at PLoS Computational Biolog

    Practical Issues in Imputation-Based Association Mapping

    Get PDF
    Imputation-based association methods provide a powerful framework for testing untyped variants for association with phenotypes and for combining results from multiple studies that use different genotyping platforms. Here, we consider several issues that arise when applying these methods in practice, including: (i) factors affecting imputation accuracy, including choice of reference panel; (ii) the effects of imputation accuracy on power to detect associations; (iii) the relative merits of Bayesian and frequentist approaches to testing imputed genotypes for association with phenotype; and (iv) how to quickly and accurately compute Bayes factors for testing imputed SNPs. We find that imputation-based methods can be robust to imputation accuracy and can improve power to detect associations, even when average imputation accuracy is poor. We explain how ranking SNPs for association by a standard likelihood ratio test gives the same results as a Bayesian procedure that uses an unnatural prior assumption—specifically, that difficult-to-impute SNPs tend to have larger effects—and assess the power gained from using a Bayesian approach that does not make this assumption. Within the Bayesian framework, we find that good approximations to a full analysis can be achieved by simply replacing unknown genotypes with a point estimate—their posterior mean. This approximation considerably reduces computational expense compared with published sampling-based approaches, and the methods we present are practical on a genome-wide scale with very modest computational resources (e.g., a single desktop computer). The approximation also facilitates combining information across studies, using only summary data for each SNP. Methods discussed here are implemented in the software package BIMBAM, which is available from http://stephenslab.uchicago.edu/software.html
    corecore